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A hybrid method with supercompact multiwavelets is suggested as an efficient and practical 

method to compress C F D  dataset. Supercompact multiwavelets provide various advantages such 

as compact support  and or thogonal i ty  in C F D  data compression. The compactness is a crucial 

condi t ion for approximated representation of C F D  data to avoid unnecessary interaction bet- 

ween remotely spaced data across various singularities such as shock and vortices. But the 

supercompact multiwavelet method has to fit the C F D  grid size to a product  of integer and 

power of two, m X 2 n. To resolve this problem, the hybrid method with combina t ion  of 3, 2 and 

1 dimensional  version of wavelets is studied. With the hybrid method, any arbitrary size can be 

handled without any shrinkage or expansion of  the original  problem. The presented method 

allows high data compression ratio for fluid s imulat ion data. Several numerical  tests substantiate 

large data compression ratios for flow field s imulat ion successfully. 
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N o m e n c l a t u r e  
i, j ,  k : Index parameter 

: C F D  data 

: D a t a  transformed to wavelet field 

from C F D  data 

: Residual or wavelet coefficients 

~on(x, y,  z)i Polynomial  shape function 

T : Post t ransformation matrix 

H, G : Decomposi t ion matrices 

xis~ : Volume 

q : Vanishing moment  

Ngr~ : Number  of grid points 

Maxaata : Maximum value in original  data 

Paata : Processed data 

Oclata ~ Original  data 

Lz Error  " , /~,[  Paata- Oeata] 2 /Ng,-~e 
Lz Ratio Error : 

, / ~  [ ( P ~ t ~ -  Ousts)/Maxaat~] 2 /N,~a 
Sizing parameter SP : 

S P -  Ngr~ - 1 
q - I  

1. In troduct ion  
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Recently, C F D  dataset size has sharply increas- 

ed in many practical cases such as full-scale in- 

tegrated aero-vehicle s imulat ion or turbo machi- 

nery analysis. In these cases, many grid points and 

high fidelity s imulat ions are adopted for better 
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level of accuracy. Even the CFD analysis for 

basic researches by Lee, S. and Kim, K.(2000) 

and Shin, S.(2000) needs many grid points and 

complex governing equations. In Gridpoints pub- 

lished by NAS Division at NASA (2001), the 

computed CFD results often have as huge data 

size as giga-byte or even tera byte in NASA's 

'Information Power Grid (IPG) Project'. 

These big data sets, sometimes, create tremen- 

dous rendering time as well as technical difficul- 

ties in interactive post-processing/visualizing the 

data. In addition, due to limited network band- 

width constraints, data transmission time between 

remote computers in distributed systems sharply 

increases. 

To resolve these problems, the supercompact 

multiwavelet scheme is used for CFD data com- 

pression. It is firstly suggested by Beam, R.M. 

and Warming, R.F.(1996) for 1D case and ex- 

tended to 3D by Lee, D.(2000, 2001) through 

the construction of proper 3D approximation 

and residual operators for the decomposition pro- 

cess. This method can allow that CFD dataset is 

approximated with small number of supports and 

higher degree of accuracy. It also provides fun- 

damental advantages such as orthogonality and 

symmetry. 

In the research by Lee, D. (2000), the super- 

compact multiwavelet scheme has its own limita- 

tion that the applied model size should be the 

product of an integer and power of two. In other 

word, SP has to be m x 2 n ( n E Z )  along all 

direction. If the grid size does not meet this 

requirement, the grid should be either shrunken 

or expanded for fitting. However, whatever op- 

tion is chosen, the overall compression ratio 

drops since some parts of the solution remain 

untouched in shrinkage case or extra memory is 

required in expanding case. 

In this paper, we propose a hybrid supercom- 

pact multiwavelet method. The hybrid method 

combines the various dimensional versions of 

multi-resolution (3D, 2D and ID) in decomposi- 

tion and reconstruction routines. So it can in- 

crease the coverage area directly touched by the 

various versions and eventually increases the data 

compression ratio. 

2. S u p e r c o m p a c t  M u l t i w a v e l e t  

Wavelet bases determine the efficiency of the 

wavelet transform. They should be amenable to 

specific problem constraints. For example, in 

Daubechies, I.' research (1988), Daubechies wa- 

velet base represents good performance in image 

compression. However, typical photographic ima- 

ges and fingerprint images are very different from 

the numerical solutions of the CFD. 

The application of wavelets to CFD data 

should address some constraint issues. CFD data 

have the discontinuities like shock, vortices and 

shear layers. The data is also given as a vector 

quantity, so computation of wavelet should be 

careful in satisfying the physical laws as conser- 

vation laws. 

To address these constraints, the supercompact 

multiwavelet is used in this paper. While the 

Haar wavelet can exactly represent any piecewise 

constant function in Haar, A.'s research (1910), 

the supercompact wavelet can exactly represent 

any piecewise polynomial functions. Higher level 

of accuracy is attained by higher order polyno- 

mials of supercompact wavelet. And it is based 

on multiwavelets (family of wavelets). Multiple 

wavelets conduct decomposition and reconstruc- 

tion processes using more than single mother wa- 

velet. They could offer fundamental advantages 

such as orthogonality, symmetry, short support 

and higher degree of accuracy. Because of these 

beneficial characteristics, the multiple wavelets 

are regarded as a good tool in allowing better 

data compression and feature extraction than a 

single wavelet. 

2.1 Pre- and post-transformations 
The use of multiple wavelets has additional 

steps for transforming given data ff to vector 

quantity if,. Multipoint data is transformed into 

a vector data by using various orthogonal basis 

function such as Legendre polynomials. The ac- 

tual decomposition and reconstruction are per- 

formed on this transformed ~ dataset. In Lee, 

D.'s research (2000), if we choose the order of 

vanishing moment q, the order of Legendre poly- 
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nomial / is /=q - 1. Volume Xjjk is 3D physical 
base domain for multiple wavelet application, 
composed of substantial points in x~-llx<xi, 
yj-l~y~yj, zk-lgzgzk. 

(xijk) n= (xi-l+ w yj-l+v, zi,-l+h$k) (1) 

where 

/i(n) =IUOd(TZ-hz(?Z)~2, 4) (2) 

/j (n) =quotient (n- ik ( ti) $, 4) (3) 

lk (n) =quotient ( a, 4’) (4) 

And n is a sequence integer with an extent like 
OIn<q3- 1. Here, mod and quotient indicate 
reminder and quotient in integer division, respec- 
tively. 8ijk is the column vector located at the 
sequenced positions as in (1)) i.e. 

(gijk) n=U (xijk) n for (%ijk) nEXijk (5) 

The traIlSfOrInatiOI'I from ajjk t0 Gijk iIl matrix 

notation is expressed as 

Rijk=T2ijk (6) 

We can choose a polynomial of degree 1 which 
adequately represents the data (gijk) n as follows : 

(Nick) n”$~&zPn(%v Yv 2) (7) 

The polynomial shape function pn (x, y, z) is the 
basis function used in transformation process. 

Note that once the basis functions are ortho- 
gonal to one another in the same dimension, the 
orthogonality remains valid to other basis func- 
tions in other dimension. Hence the pn (x, y, z) is 
also orthogonal to one another and it can be 
dimensionally spilt as 

(9) 

and the post-transformation is defined. 

Because p,(x, y, z) is orthogonal, the coeffl- 
cients (&) ijk are simply written as 

(10) 

The pre-transformation process is performed as 
in equation (10). 

2.2 Decomposition and reconstruction 
In supercompact wavelet case, the number of 

support points is small. Decomposition and re- 
construction of supercompact multiwavelets in- 
volve only two vector sequences in obtaining the 
average and the detail values. 

In Lee, D.‘s research (2000, 2001), the super- 
compact wavelets retain the spatial compactness 
and orthogonality of Haar wavelets. In 3D, de- 
composition process involves two blocks along 
each direction on finer grid system in order to 
compute one average vector and a number of resi- 
dual vectors on a coarser grid system. One cell on 
the coarse grid corresponds to 8 sub-cell such as 
Fig. 1. 

One step of the decomposition is performed as 
the following form : 

where 

(13) 

(14) 

Fig. 1 One step multi-resolution cell merging in 31 
(Average values are situated at 000 subcell) 
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~ =  

~2i-1,2j-1,2k-1 ~ 

~ 2 L 2 j -  1 ,2k-1 

~ 2 i -  1,2j ,2k-1 

~t2i,2j,2k--1 

~2i- -  1,2j--1,2k 

~2i,2J-- 1,2k 

~2i-- l,2j,2h 

~2i,2),2k--  1 

or000 I 

(2100 I 

(2010 I 

(2110 I 

(2001 I 

(2101 I 

(2011 [ 

(2111 [ 

(15) 

The 8 /~ in /~P are the vectors on the fine grid. 

They are replaced by one average vector, ~ - 1  

and 7 residual vectors, ~p-a on coarse grid. The 

average vector means interpolation vector and 

residual vectors represent interpolation errors in 

decomposition. Due to orthogonality of  the Le- 

gendre polynomial,  the operator H is given like 

this. 

H = [H°°°Hl°°H°l°H"°H°°lHl°lH°nH °n] (16) 

where 

t O  ,--0 r O  

H?l,~+l=8J_lJ_lJ_f~(2$+l, 2;?+1, 2~'-'k 1) 

× ~i($, 77, ~') d~d;?d~ 
,"1 ,,'0 ,"0 

H~I,;+,=8Jo J_lJ_fA2#-l ,  2;?+1, 2~'+1) 
× 9,(~, ;?, ~) d~d;?d~ 

olo ;o (1 (o 
H,+I,~+I=8j_lj ° j_19~(25+1, 2;?--1, 2~'--kl) (17) 

×9~(~, ;?, '()d~d;?d~ 

p l  p 1  p l  
111 - - 8  Hi+I,j+x- / 0 / o  Jo 9 j ( 2 ' - 1 ,  2;?-1,  2 ~ - 1 )  

× 9 , ( $ ,  ;?, ~)dSd;?d~ 
( i=0 ,  1, 2, ..., q3-1,  j=O,  1, 2, ..., qS-1)  

To compute the operator matrix B and D, these 

matrices are computed at first using following 

equations. 

D =  

-I I 
- I  

- I  

- I  

- I  

-I 
- I  

I 
I 

I 

I 

I 
I 

- M T H  (18) 

T T - H lOO - Hooo 
T T Hoxo- Hooo 
T T Hno-Hooo 

where M r =  x r Hoot-Hooo 
T T H1o1-Hooo 
T T Hon-Hooo 
T T H m - H o o o  

1 
B =  (DD r) -2- (19) 

Finally, G matrix is computed as G = B D .  H be- 

comes l × 8 block matrix and G does 7 × 8 block 

matrix. And H and G are orthogonal due to the 

orthogonality of Legendre polynomials. So the 

reconstruction matrices are computed by trans- 

posing the decomposition matrices H and G as 
follows : 

f fP=Hr~ p-1 + G r ~  p-1 (20) 

2.3 Thresholding 

In the supercompact multiwavelet decomposi- 

tion, the decomposed data in same volume x;jk 

is strongly correlated. By this feature, it can be 

possible to approximate the original data with a 

few decomposed values. The other values can cut 

off if they are smaller than a certain threshold 

value. Data compression is performed in this 
way. 

To get accurate approximation of  original data 

and compress it with large ratio, appropriate thr- 

esholding method must be applied. And in the 

case of multiwavelets, a rather complicated treat- 

ment is needed since a vector instead of a scalar 

must be handled. We follow a thresholding meth- 

od suggested by Downie, T. R. and Silverman, B. 

W.(1998), used in noise reduction in signal pro- 

cessing which is based on the covariance structure 

of multiwavelets. 

3. H y b r i d  M e t h o d  

Data representation with higher order accurate 
interpolation requires modification in the vicinity 

of domain boundaries. In decomposition proce- 

dure, two blocks along each direction are in- 

volved in computation. So the sizing parameter 

SP should be power of  2 along all direction. If 
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this requirement is not satisfied, the grid points 

must be shrunken or expended. But whatever op- 

tion is chosen, the overall compression ratio 

drops since some parts of the solution remain 

untouched in shrinkage case or extra memory is 

required for the extended problem in expanding 

case. 

One of practical remedies for this size restric- 

tion is to divide the problem domain into small 

blocks where independent version of multi-reso- 

lution can be applied to each block. The indivi- 

dual subblocks have flexibility in choosing ap- 

plication sizes and multi-resolution dimensions 

as 3D, 2D or 1D. The application size varies with 

the order of accuracy and number of multi-reso- 

lution levels. 

Depending on the grid size restriction, one 

divides the original problem's domain into 3D, 

2D, arid 1D subsets as Fig. 2. At this time, each 

m2 n 

30 m,.at:)oel 

2 D  

k2n i i 

! - . . . . . .  

1 

1[ 

Fig. 2 Hybrid method procedure 

dimensional subset has the grid size that makes 

the SP become power of 2 along each direction. 

3D multi-resolution is performed in one piece 

of 3D subset using full 3D version of supercom- 

pact wavelets. 2D multi-resolutions are con- 

ducted layer by layer using 2D supercomapct wa- 

velets, and 1D versions are applied line by line 

using ID wavelets. The suggested technique is 

hybrid method that combines 3D, 2D and ID 

version of multi-resolutions. 

Because of this flexible implementation, most of 

the problem domains are covered in the multi-  

resolution process, i.e. decomposition or recon- 

struction. The number of untouched grid points is 

very small. If the coverage of 3D piece is 12.5% 

of whole domain, the grid points used in decom- 

position or reconstruction process are 87.5% of 

whole domain. Therefore, if the grid size of the 

problem is worst, hybrid method can increase the 

compression ratio comparing with grid shrinkage 

case or grid expanding case. 

However, the hybrid method could introduce 

other problems. 3D, 2D and 1D versions of multi-  

resolution go through different processes in de- 

composition or reconstruction procedure. While 

the 3D version considers the property variation 

in all three directions, the other multi-resolutions 

(2D and ID) do not have communication bet- 

ween the other layers or lines. Thereby, deriva- 

tive information is missing across the layers or 

lines. The shock discontinuity that lies across the 

sweeping lines does not go through any discon- 

tinuity information treatment. However, the accu- 

racy concern turns out to be not much of problem 

as numerical test (data compression for the solu- 

tion with shock) shows that the consistent solu- 

tion is maintained even across the shock where 

the subdivision interface is located. 

4. Numerica l  Tests  and Discuss ion  

In this research, the hybrid method based on 

supercompact multiwavelet scheme is implement- 

ed for practical data compression. The numerical 

tests are performed to the datasets with various 

levels of grid density and fidelity levels of PDE 

solutions. 
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4.1 Application to 2 dimensional dataset 

The test dataset is the simulation of vortex 

shedding around a square cylinder with ground 

proximity by Hwang, J., Lee, B., Park, Y. and 

Lee, D. (2001). This case is a solution of unsteady 

incompressible Navier-Stokes' Equation and the 

grid size is 112×177. The order of vanishing 

moment q is 3. In this case, the ideal grid size is 

65X 129 i.e. 2Sx26 in SP number or 129X257 i.e. 

26X2 r in SP number. The problem's grid size 

should be shrunken or expanded to become ideal 

size. In the shrinkage case, the grid points that are 

not used are about 11,000. In expanding case, 

about 13,000 more grids are needed in computa- 

/ kfom C o m ~  ~ u r  

Fig. 3 

(a) Before compression 

,tt~C, o m ~  ccmlmw 

_ .  P 

(b) After compression 

Pressure contours of vortex shedding dataset 
(2D, 112 × 177) ; Compression ratio is 14.5 : 
I ; Third order scheme is used ; 5 level of multi- 
resolution 

tion. So data compression ratio might decrease. 

The hybrid method can release the size restriction. 

Using the method, untouched grid points are 

about 2,200, therefore high compression ratio can 

be obtained. In this case, the compression ratio is 

about 14.5 : 1. 

Fig. 3 shows the contours of the pressure field 

before and after data compression. Comparing the 

two figures, the pressure contours represent very 

similar features. But memory required for com- 

pressed dataset is only 5.5 percent of the original 

data. The L2 Error norm is 5.921. However, in 

this case the flow variables with large order of 

values exist in original dataset, yielding big L2 

Error norm and the Lz Ratio Error is about 

2.655 × 10 -5, so the error is very small. 

4.2 Application to 3 dimensional dataset 

The first dataset is the Rott's solution (1958) of 

the analytical, self-similar, free vortex propaga- 

tion. Rott's vortex is an exact solution of the 

Navier-Stokes' equation, which allows a steady, 

3D axisymmetric vortex. This vortex propagates 

in the streamwise direction with linearly in- 

creasing free stream velocity. And the gird size is 

l lX51X51 .  

Using third order scheme, the ideal size of 

grid set is 9 × 4 9 × 4 9  in shrinkage case and 17× 

65 ×65 in expanding case. If the shrinkage case, 

the untouched grid points are about 7,000. It is 

about 24.5~o of original grid set. In expanding 

case, using supercompact multiwavclets only, the 

additional grid points are about 43,000. But with 

hybrid method, the untouched grid points are 

only 8. Therefore, high compression ratio can be 

obtained. In this case, the compression ratio in- 

creases to 34.8: 1. 

Figure 4 shows the solution on a normal plane 

(51 × 51) to the streamwise direction. It shows the 

energy contours of before and after data com- 

pression. In this application, the Lz Error is about 

7.736×!0 -~ and the L2 Ratio Error is 5.564× 

10 .6 . The error is very small and it can be possible 

to obtain very similar data comparing with origi- 

nal data with high compression ratio. 

The second case is the transonic flow problem 

in 3D wing. At this time, the wing is not a pu- 
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blicly known wing,  instead designed in our la- 

boratory. The solut ion is obtained from Navier-  

Stokes' equation computat ion.  The  Mach number 

is about 0.8. The grid size is 3 3 × 3 3 ×  129. When 

third order supercompact mult iwavelet  being 

used in this case, the grid size becomes ideal. So, 

whether hybrid method is used or not, the com- 

pression ratio doesn't change. 

Fig. 5 shows the density contours o f  original  

and reconstructed dataset. In these figures, the 

shock in original  dataset is clearly captured in the 

reconstructed dataset. A n d  the compress ion ratio 

is 14.7 : 1. The L~ Error is about 1.272 × 10 -s and 

the Lz Ratio Error is 1.571 × 10 -s. So the error is 

quite small.  

Fig. 6 shows the density change across the 

shock along the line that the distance between 

the line and airfoil surface is about 0.2 t imes o f  

chord length and it goes to chord direction. It 

can be shown that the shock strength and density 

change are very similar between original  and 

reconstructed data set. So it can be found that 

original  data features do not change after data 

compression.  

The total compress ion ratio and error o f  each 

dataset are shown in Table  1. 

Fig. 4 
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Density contours of  transonic flow at 3D 
wing (33×33×129) ;  Compression ratio is 
14.7 : I ; Third order scheme is used ; Four 
level of multi-resolution 
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Table 1 Results of each dataset 

Compression Lz Ratio 
ratio Error 

Square cylinder 
14.5 : 1 2.655 × l0 -s 

problem 

Rott's vortex 
34.8 : 1 5.564>( 10 -6 

propagation 

Flow problem in 
14.7 : 1 1.571 × 10 -s 

3D wing 

Q 

1 

0.~, 

0 ,8  

0 . 8 5  

Fig. 6 

i , , , , i , ! i ,  i , , , , I , , , 
-1 0 1 2 

X 

Density comparison across the shook 

.~ l i + f m ~  c o m p r m m l o n  
A#~" comlml~ion 

5. Concluding Remarks 

Hybrid method with supercompact multiwa- 

velet scheme is generalized to three dimensions 

with the use of multi-scaling wavelet functions. 

Supercompact multiwavelet can be considered as 

a proper choice for CFD simulation data in terms 

of reducing the support points and representing 

features of  dataset. And to resolve the size re- 

striction problem and to expand the multi-reso- 

lution coverage area, hybrid mult i-resolution is 

represented. It combines various dimensions of  

supercompact wavelet schemes such as 3D, 2D 

and 1D. It can improve the compression ratio 

significantly by resolving the size restriction pro- 

blem and expanding the multiresolution coverage 
area. 

This wavelet scheme allows high compression 

ratio with reasonable error bound. It is also 

shown that the inaccuracy from the introduction 
of the hybrid method is negligible, and important 

features in the original dataset are well preserved 

in the reconstructed dataset. This method is suc- 

cessfully applied to practical CFD dataset with 

discontinuities such as shock, shear layers, etc. 

Due to these advantages, hybrid method with 

supercompact multiwavelet scheme can be acce- 

pted as a good management tool for visualizing 

features of  huge C F D  dataset with handy and 

swift treatment and also a valuable tool for rapid 

data transfer in distributed systems. 
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